Extracting non-negative basis images using pixel dispersion penalty

نویسندگان

  • Wei-Shi Zheng
  • Jian-Huang Lai
  • Shengcai Liao
  • Ran He
چکیده

Non-negativity matrix factorization (NMF) and its variants have been explored in the last decade and are still attractive due to its ability of extracting non-negative basis images. However, most existing NMF based methods are not ready for encoding higher-order data information. One reason is that they do not directly/explicitly model structured data information during learning, and therefore the extracted basis images may not completely describe the ‘‘parts’’ in an image [1] very well. In order to solve this problem, the structured sparse NMF has been recently proposed in order to learn structured basis images. It however depends on some special prior knowledge, i.e. one needs to exhaustively define a set of structured patterns in advance. In this paper, we wish to perform structured sparsity learning as automatically as possible. To that end, we propose a pixel dispersion penalty (PDP), which effectively describes the spatial dispersion of pixels in an image without using any manually predefined structured patterns as constraints. In PDP, we consider each part-based feature pattern of an image as a cluster of non-zero pixels; that is the non-zero pixels of a local pattern should be spatially close to each other. Furthermore, by incorporating the proposed PDP, we develop a spatial non-negative matrix factorization (Spatial NMF) and a spatial non-negative component analysis (Spatial NCA). In Spatial NCA, the non-negativity constraint is only imposed on basis images and such constraint on coefficients is released, so both subtractive and additive combinations of non-negative basis images are allowed for reconstructing any images. Extensive experiments are conducted to validate the effectiveness of the proposed pixel dispersion penalty. We also experimentally show that Spatial NCA is more flexible for extracting non-negative basis images and obtains better and more stable performance. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

Using Local Median as the Location of the Prior Distribution in Iterative Emission Tomography Image Reconstruction

Iterative reconstruction algorithms like MLEM (Maximum Likelihood Expectation Maximization) can be regularized using a weighted roughness penalty term according to certain a priori assumptions of the desired image. In the MRP (Median Root Prior) algorithm the penalty is set according to the deviance of a pixel from the local median. This allows both noise reduction and edge preservation. The pr...

متن کامل

Local Region Sparse Learning for Image-on-Scalar Regression

Identification of regions of interest (ROI) associated with certain disease has a great impact on public health. Imposing sparsity of pixel values and extracting active regions simultaneously greatly complicate the image analysis. We address these challenges by introducing a novel region-selection penalty in the framework of image-on-scalar regression. Our penalty combines the Smoothly Clipped ...

متن کامل

Depth from Monocular Images using a Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture

Computing pixel depth values provide a basis for understanding the 3D geometrical structure of an image. As it has been presented in recent research, using stereo images provides an accurate depth due to the advantage of having local correspondences; however, the processing time of these methods are still an open issue. To solve this problem, it has been suggested to use single images to comput...

متن کامل

Image Stitching of the Computed Radiology images Using a Pixel-Based Approach

In this paper, a method for automatic stitching of radiology images based on pixel features has been presented. In this method, according to the smooth texture of radiological images and in order to increase the number of the extracted features after quality enhancement of initial radiology images, 45 degree isotropic mask is applied to each radiology image to observe the image details. After t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012